**Serum Albumin as a Long Term Predictor of Serious Non-AIDS Events among people Living with HIV**

A Ronit1, CI Hatleberg2, L Ryom3, F Bonnet4, W El-Sadr5, R Weber6, C Pradier7, S de Wit8, M Law9, A d’Arminio Monforte10, J Lundgren11, AN Phillips11, CA Sabin11

1Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; 2CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; 3CHU de Bordeaux and INSERM U1219, Université de Bordeaux, France; 4ICAP at Columbia University, New York, USA; 5Academic Medical Center, Dept. of Global Health, University of Amsterdam, and the Amsterdam Monitoring Foundation, Amsterdam, The Netherlands; 6Department of Infectious diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; 7Department of Public Health, HIV Monitoring Foundation, Nice, France; 8Division of Infectious Diseases, Saint Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium; 9The Kirby Institute, UNSW Australia, Sydney, Australia, 10Dipartimento di Scienze della Salute, Clinica di Malattie Infettive e Tropicale, Azienda Ospedaliera-Poliversitaria San Paolo, Milan, Italy; 11Institute of Global Health, UCL, London, United Kingdom

**BACKGROUND**

- Serum albumin (sAlb) has been associated with AIDS progression and all-cause mortality in people living with HIV (PLWH)1-3.
- sAlb was recently shown to be associated with development of serious non-AIDS events (SNAEs) in PLWH in a randomized clinical trial4.
- Using data from the D:A:D study we aimed to:
  - i) confirm these findings in a large and heterogeneous cohort
  - ii) assess whether the association between sAlb and SNAEs holds for the most common individual SNAEs including cardiovascular disease (CVD) and non-AIDS defining malignancy (NADM)
  - iii) determine whether the association between sAlb and SNAEs wanes over time, and
  - iv) identify factors that may modify the effect of sAlb

**METHODS**

**Study population:** All individuals in the D:A:D cohorts with sufficient follow-up data on sAlb (Figure 1).

**Endpoints:** CVD (composite of myocardial infarction, stroke, invasive cardiovascular procedures or death from CVD); NADM (except for basal cell or squamous cell skin cancer or death from NADM); and a composite endpoint of any SNAE (excluding CVD, NADM in addition to end stage renal disease (ESRD) or death from renal disease; end-stage liver disease (ESLD) or death from liver disease and any other non-AIDS death).

**Follow up:** Each cohort-specific baseline date was set to the later of the date of routine sAlb monitoring (arbitrarily defined for each cohort) or 1st February 2004. Participants were followed from the designated baseline date to the date of each endpoint; follow-up for each person was censored on the date of an AIDS death, six months after the person’s last clinic visit or on 1st February 2016, whichever occurred earlier.

**Statistics:**
- Poisson regression was used to model the rate of any SNAE, CVD and NADM while adjusting for potential confounders (including demographics, HIV disease-related parameters and markers of organ system injury) defined on the baseline date.
- We compared the strength of the association between sAlb and the CVD endpoint with that of total cholesterol by standardizing each parameter to reflect a 1 standard deviation (SD) increase in the baseline value of the marker.
- We tested for interaction between sAlb and i) age-group, ii) follow-up time, iii) smoking status, iv) CD4 count, and v) HIV-RNA viral load (VL) (time-updated).

**RESULTS**

- Of 16,350 individuals, 1463 developed a SNAE (371 CVD, 200 ESDL, 40 ESRD, 553 NADM, 299 deaths from other non-AIDS causes)
- Baseline characteristics and event rates for each endpoint stratified by baseline sAlb measurement are depicted in Table 1 and 2.
- Lower sAlb was associated with any SNAE, CVDs, NADMs and rate ratios (RRs) were only modified slightly after adjustment (Table 3).
- Adjustment for the latest CD4 cell count, had only a minimal effect on the association (aRR 0.81 [95%CI: 0.78, 0.83], p<0.001). Excluding either ESRD or ESDL from the combined SNAE endpoint did not change the estimates.
- A 1 SD higher sAlb was associated with a 15% lower CVD rate (aRR 0.85 [0.76, 0.94], p<0.01), whereas a 1 SD lower total cholesterol was associated with a 12% lower CVD rate (aRR 0.88 [0.83, 0.94], p<0.01).
- Interaction-analyses are depicted in Figure 2. The association between sAlb and SNAEs were similar across age and CD4 categories (p-interaction=0.01 for both).
- The association between sAlb and all SNAE endpoints was still evident six years after baseline sAlb measurement and there was no evidence of interaction between sAlb and follow-up time for any SNAE, CVDs and NADMs (all p-interaction>0.3).
- We found evidence for an interaction between smoking and sAlb with a stronger association between sAlb and SNAEs for current smokers vs. never smokers (p-interaction=0.01).
- There was some evidence of effect modification with the latest VL with associations being slightly stronger in those with a non-suppressed VL (p-interaction=0.01).

**LIMITATIONS**

- sAlb was measured irregularly in the participating cohorts. Thus, to avoid the effects of increased monitoring in sick individuals we only considered fixed timepoint analysis.
- Not all individuals in the D:A:D cohort had sAlb measurements available.

**CONCLUSIONS**

- sAlb is independently and linearly associated with development of SNAEs
- The association between sAlb and SNAEs did not wane over time (>6 years of follow up) and the association seemed to be strongest for current smokers
- sAlb may be considered to be included in future HIV-prognostic indices for SNAEs and studies exploring mechanistic associations between sAlb and SNAEs are warranted.

**ACKNOWLEDGEMENTS**

Cohort PIs: (EuroSIDA), M Law* (AHOD), A d’Arminio Monforte* (ICONA), L Morfeldt* (HivBIVUS), C Pradier* (Nice), P Reiss* (ATHENA), R Weber* (SHCS), S De Wit* (Brussels), CA Sabin*, AN Phillips*, DA Kamara, CJ Smith, A Mocroft*.

**Statistics:**

- Events
- Event Rates Stratified by Baseline Serum Albumin Measurements
- Abbreviations: CVD, cardiovascular disease; NADM, non-AIDS defining malignancy; PYRS, person years of observation.

**REFERENCES**


Download poster at: www.chip.dk